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Abstract In this paper, we investigate the combina-
tion difference complex projective synchronization (CD-
CPS) of the fractional-order (FO) 6-D chaotic system
(CS) using active control technique. Based on the Lya-
punov stability theory and active control technique is to
achieve the combination difference synchronization be-
tween two master systems and one slave system. These
master systems are FO 6-D Lii system, and the slave
system is FO 6-D Liu system. The evolution of the
difference synchronization scheme has additions to the
unit of the existing synchronization technique. . Nu-
merical simulations and graphical results are presented
to demonstrate the effectiveness and reliability of CD-
CPS scheme. The presented CDCPS scheme has several
applications in secure communications and information
processing.

Keywords Combination difference synchronization -
projective synchronization - 6-D chaotic system - active
Control - fractional order

1 Introduction

The chaos synchronization and chaos control of
dynamical systems are highly essential topics in
mathematics and physics. A CS is a complex nonlinear
system, which is extremely sensitive to initial states
and parameters changes. Fowler et al.[1] are the first
who introduced the complex Lorenz system in 1982,
which performed an essential role in various branches
of physics, mainly for secure communication. In
complex variables, the unit of variables is getting
twice which, enhance the protection of the
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transmitted information. After that, many CS and
hyperchaotic (HC) complex systems are proposed and
studied such as complex Lorenz, complex Chen,
complex Lu system, complex HC Lorenz [2], etc. In
FO, the complex CS and HC complex system also
introduced in the various paper these are FO complex
Lorenz, FO complex Liu [3], HC complex Lii [4], etc.
Synchronization of complex CS (HC) has excellent
application in the latest decades, such as complete
synchronization [5], anti synchronization [6], difference
synchronization [7, 8], function projective
synchronization [9], projective synchronization (PS)
[10], hybrid projective synchronization [11]. Mahmoud
et al.[12] investigated with projective synchronization
of the complex HC system and suggested a
communication technique based on passive theory. In
[13], author discussed the generalized combination
complex synchronization for FO complex CS. In [4],
the author investigated the complex dynamical
behavior and modified PS in FO complex HC Lii
system.

To obtain the chaos synchronization technique, several
synchronization techniques have been produced such
as active control [14], adaptive control [15], sliding
mode control [16]. Among these techniques, the active
control is used during combination difference complex
synchronization. In difference synchronization
technique is applied in chaotic secure communication
to improve security data. In which the scaling matrix
is designed as a complex matrix. Then it provides a
complex and irregular transmitted signal that they
have the powerful anti-attack capability and
anti-translated ability compare with the previous
model. The selection of FO complex HC system has
been suggested for secure communication.
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The rest of the paper is organized as follow: Section 2
contain Preliminaries. In Section 3 consists the
problem formulation of combination difference

complex projective synchronization. Section 4 provide

the system description of system and Section 5 contain

Example of CDCPS. Section 6 contain the numerical

simulation, Finally Section 7 contain conclusion.

2 Preliminaries

Definition 1: The Caputo’s derivative for function
¥ (t) with FO ¢ is define by:

q _ 1 4 U (x) i
D =g [ e

where n — 1 < ¢ <n and ¥(q) = [;~ 297 e "du is the
gamma function.

In this paper, the Caputo definition is applied.
Property 1: If ¥ (t) is a constant function and the
order ¢ > 0 ,the Caputo FO derivative satisfies the

conditions:

DI (t) =0

Property 2: The Caputo fractional derivative
satisfies the following linear property:

Dq[al% (t) + a2!l72(t)] = aquLl'/l (t) + aquWQ(t)

where ¥y (t) and Ws(t) are functions of t and a; and as
are constants.

3 Problem Formulation

Consider the two master chaotic (hyperchaotic)
complex system as:

Dz = F(z)A + G(x) (1)
D% =F(y)A+G(y) (2)

where X = (11,22, ....,2,)T and Y = (y1,%2, .., Yn) "
are the state complex vector of system (1) and (2)
respectively and x = 2" + jai, y = y" + jy', j = vV—1
and r represent as real parts and ¢ represents
imaginary parts. Assume
T =T11 +JT12,%2 = T13 + JT145e-,Tn = Tin—1 + JT1n;
then x" = (.1311, L13y -+ xln_l)T,
l‘i = (1‘12, T14y ---y 131,L)T.
Y1 = Y1 +JY12,¥2 = Y13 + jY14,--Yn = Yin—1 + jYin,
then y" = (Y11, Y13, -, Y1n-1)"y" = (Y12
Y14, - Yin) L. F(x) and F(y) are n x n complex
matrix of state complex variables of (1) and (2). G(z)
and G(y) are non-linear complex vector functions and

Ais an n x 1 real (or complex) vectors of system
parameter.
One slave CS (HC) complex system is written as

D2 =H(z)B+ L(z)+u (3)

where z = (21, 22, ..., 2n) T is a state complex vector of
system (3). z = 2" + j2¢, j = /—1. Assume
21 = 211 + j212,22 = 213 + J 214520 = Z1n—1 T JZ1n,
then 2" = (211, ARTEEY Zln_l)T, Zi = (212, Z1dy oeny Zln)T.
H(z) is n x n complex matrix of state complex
variables, L(z) is a on-linear complex vector function.
B is an n x 1 real (or complex) vectors of system
parameter. The controller is u = u” + ju’, where
u" = (’U,H, ULSy eey uln,l)T7 ’U,i = (Ulg, ULy eey uln)T.
Definition 1:[17, 18] For the maste complex CS (HC)
systems (1) and (2) and the slave CS (HC) system (3)
is said to be combination difference complex
projective synchronization if there exist complex
scaling matrice A € R™*™ such that.

limi—soo | E(t)|| = limy—oollz = Mz — y)[| = 0

where the complex scaling matrix A = h] +j h% =
diag(h11 + jhiz, hiz + jhia, .. hin—1 + jhan), |-l
present the norm of a matrix. E(t) = E"(t) + jE"(¢),
Where Er(t) = (E117E13, ceny Eln_l)T,
E' = (Erg, B4, ..., B1n) ™.
The error system is written as follows

s
—~
~
~
Il

E"(t) + jE'(t)

274 j2t = (R 4 jh) (@ + ja' —y" = jy"))
= 2" 42" = (h] + jhy) (e —y" + (e’ —y"))
=2 +j2' —hi(z" —y") — jhi(z" — ¢

— jh (" —y") + hi (' —y")

=2" = hi(z" —y") + hy(2' —y")

+j(2" = hi(a" —y') — hy(a" —y")) (4)

Separating real and imaginary error system, we get

E"(t) =2"—hi(z" —y") + hy(a" — ')
Ei(t) = 2" —hi(z' —y") — hb(a" —y")
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The error dynamics is obtained as Selected a Lyapunov function as
DIE"(t) = D?2" — hj(D%" — D%y") + h(D%" — DYy") V(E",E') = %((E”)TE’” +(EHTEY (11)

= H"(z11, 213 -+s 21n—1)B + L" (211, 213, -
y21n—1) — MY (F" (211, 213, ooy T1n—1)A + G" (211,
L13y «es l’ln—l) - Fr(yn,ym, ~-~7y1n—1)A
— G (Y11, Y135 s Yin—1)) + RS (F* (212, 714
e 1) A+ G212, T4, ..o, T10) — F (Y12, Y14
oo Y1) A — GH(Y12, Y1y oo Yin)) +U” (5)
DYE'(t) = D" — h (D" — D%") — h(D%" — D%")
= H' (212, 214, ..., 21n) B + L(212, 214
R (F (219, %14, o, T1n) A 4+ G (212
s T145 005 Tln) — Fi(y127y14, o Yin) A — Gi(y12
Y14y s Yin)) + RS (FT (211, 13
sy T1n—1)A + G" (211,134 ooy T1n—1) — F" (Y11
s Y135 s Yin—1)A = G" (Y11, Y135 s Y1n—1)) + u'

(6)

Theorem 1: If the controller is constructed as the
following form

,---,Zln) —

u" = —H"(z11, 213, -+, 21n—1)B — L™ (211, 213, -+, Z1n—1)
+ h{(F" (211, 213, ooy T1n—1) A + G" (211, 13, oy T1n—1)
= F"(y11, Y135 s Y1n—1) A — G" (Y11, Y135 -+ Y1n—1))

— hy(F (212, %14, ooy T1n) A + G (212, T14, ooy T1n)
—Fi(yu,yM,...7y1n)AGi(y12,y14,...,yln))
— K1 E"(¥)

u' = —H' (212, 214, .., 21n) B + L (212, 214, -+ 210
+ B (F (@12, X145 ooy T10) A + GH(T12, T14, ooy T1)
- Fi(y12,y14, s Yin) A — Gi(y127y147 o Y1n))

— WY (F (211,213, ooy T1n_1)A + G (211, 13, o, T1p—1)
= F"(y11, 9135 -+, Y1n—1)A = G" (Y11, Y13, -+, Y1n—1))
— K2E () (8)

(7)

Then the slave system (3) can asymptotically
synchronize the combination difference system
between two master systems (1) and (2) with regard
to the complex scaling matrix, where Ky, Ko > 0 is a
constant.

Proof. Using equations (7) and (8) are substitute in (5)
and (6) respectively. The error systems (5) and (6) are
reduced in the following form.

DIYE"(t) = —K,E"(t)
DIE(t) = — K, E'(t)

Then the derivative of V along the trajectories of the
error dynamics (9) and (10) is takes the form:
DYV(E",EY) = (DIE")TE" + (D'E)TE

_ _Kl(ET)Q o KQ(EZ)Q

<0

Since V' > 0 and D7V < 0 and thus from theorem 1,
the error systems are asymptotically stable. O

4 System Discription of fractional order 6-D Lii
and 6-D Liu system

Consider the[4] HC complex Lii systems describe in
following manner:

Dizy =  ai(za—x1) + 24

Digy = 1Ty — T123 + T4 (12)
Digs = %(a’leg + x1T2) — c1x3

Dixy = %(9’51352 + x1T9) — dyy

where x = (11,22, 23,74)7 is the state vector,
r1 = 211 +ix12 and x9 = 13 + iT14 are complex state
vector, and x3 = x15 and x4 = x16 are real state
vector. ay,b1,cy,d; are the parameters of the system
(12).

Dizq1 +iD%12 = a1(z13 + ix14 — (T11 + i212))

+Z16

Dixyz +iD%14 = c1(w13 +ix14) — (211 +i712)T15
+Z16

Dz = é((ﬂﬁn —iz12) (213 + ix14)+

(w11 +i212) (213 — i214)) — C1715

= (w11 — iz12) (w13 + iw14)+

(11 +iw12) (213 — i714)) — d1216
(13)

Dixyg

Split real and imaginary parts of system (13), we get
FO 6-D Lii system

Dizy = ay(z13 —x11) + T16

Diziy = ay(r14 — 212)

Diziz3 = bix13 — 11715 + T16 (14)
Dizyy = by — 2107715

Dizis = 211713 + T12714 — C1T15

Dixyg = 11213 + T12T14 — d1T16

449



450 Difference Complex Projective Synchronization of the Fractional-Order 6-D chaotic Systems Using Active Control Technique

Similarly we obtain 6-D FO Liu system [3]

qugl = —QagT21 — dQ(Igg — SE%4)

Dizyy =  —aoway — 2dawa3woy

D293 = bawas — ex(T21225 — T22%26) (15)
Dixgy = bowoy — 62($22$25 + $21$26)

Dizgs = —coxos + fo(T21%23 — T22%24)

Dirys = —cowas + fo(x21224 + T2223)

5 Numerical Example

The fractional-order 6-D Lii is considered as a first
master system.

Dizyy = ai(riz —x11) + 16

Dixyy = ay(x14 — 212)

Dixi3 = bix13 — 211715 + T16 (16)
Dixyy = biz14 — 212715

Diri5 = 11713 + T12T14 — C1T15

Dixig = 11713 + T12714 — d1T16

The identical fractional-order 6-D Lii is considered as
a second master system.

Dy = a1(y13 — y11) + Y6

Diy1p = a1(y1a — y12)

Diy13 = biyiz — ynyis + Y6 (17)
Diyyy = biyia — y12915

Diyy5 = Y11Y13 + Y12Y14 — C1¥Y15

Diy16 = y11913 + Y12914 — d1¥16

The fractional-order 6-D Liu system is considered as a
slave system.

qull = —Qa2211 — dQ(Z%?) — 2’%4) + U1
D%z = —agz12 — 2d2213214 + U12
Diz3 = boz13 — 62(2’11215 - 212216) + u13 (18)
Diziy = bozia — ea(2z12215 + 211216) + U1a
Dizi5 = —cazis + fa(z11213 — 212214) + Uis
Dizig = —cazig + fa(z11214 + 212213) + U6
Error states are given by:
Ey =2z — hi(x1 — 1)
Ey = 2o — ha(x2 — 12) (19)

E3 = z3 — ha(xs — y3)

where Ey = (E11 +iE12), Es =
L3 = E15 +1E6

(Erz +iEhy),

Eu = zi1—hua(@n —yi) + hie(212 — y12)

Eio = z12 — hii(®12 — 222) — hia(@11 — y11)

Ei3 = 213 — hiz(213 — y13) + h1a(214 — y14) (20)

Eyy = 14 — h13($14 - y14) h14(l‘13 - y13)

Eis = 215 — his(@15 — y15) + has(216 — Y16)

Ei6 = 216 — h15(216 — y16) — h16(215 — Y15)

Then the control function is selected as:

ur = agz11 +d2(z35 — 234) + hai (a1 (213 — z11)
+r16 — a1(y13 — y11) — Y16) — h12(a1 (w14
—r12) — a1(y1a — y12)) — K1En

uiz = agz12 + 2daz13214 + ha1(ay (214 — T12)
—a1(y14 — Y12)) + hia(a1(z13 — 211)
+x16 — a1(y13 — y11) — Y16) — KoF1o

w3 = —byzi3 + ea(z11215 + 212216) + haz(b1213
—r11215 + T16 — b1y13 + Y11915 — y16)
—h14(b1214 — T12215 — b1Y14 + Y12Y15)
—K3FE13

ug = —byzig + ea(z12215 + 211216) + haz(b1214
—212%15 — b1y14 + y12y15) + h1a(b1213
—r11215 + T16 — b1y13 + Y11Y15 — Y16)
—K4Fhy

U5 = C2215 — f2(2’11Z13 + 2122’14) + h15($11$13
+T12T14 — C1T15 — Y11Y13 — Y1214 + C1Y15)
—hig(r11213 + T12214 — d1216 — Y11Y13
—y12y14 + d1y16) — KsE1s5

ug = c2216 + f2(z11214 + 212213) + has(z11213
+x12214 — d1216 — Y11Y13 — Y12Y14 + d1Y16)
+his(r11213 + T12T14 — C1T15 — Y11Y13
—y12y14 + C1915) — KeE16

(21)
The error dynamical system are given in the form

DiEy = —K 1B, D1E 1y = —KyF15, DB 13 = —K3E3
DiE1y = —K4F14,D'E 5 = —K5F15,DE1s = —KsEh6
(22)

Thus the system achieves the combination difference
complex projective synchronization in complex system.
6 Simulation and Results

The parameter values of master and slave systems are
chosen as (a; =42, by =25, ¢; =6, d; =5), (ag =1,
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by =5/2,¢c0="5,dy =1, ea =4, fo =4) for system
(16-18). The initial conditions of the master systems
(16),(17) and the slave system (18) are respectively
taken as. (1’11, T12,213,TL14,T15, 11716) = (704084
, 0.0492, -1.8907, 0.1506, 49.2122,
-0.2999),(y11, y12, Y13
Y14, Y15, Y16) =
(—0.5090, 0.0500, —2.001, 0.2500, 50.200
5 —0.3) (Zu, 21252135 2145 215, 216) = (21.5257, —0.1541
, 23.3017, -0.1031, -0.1057, -
0.0135)oforderq=0.99.Initialstates fortheerrorsystem(Eq1, 1
= (19.6885, -0.4543, 22.4629, -0.1467, 4.8335, 2,0 200 -200 -
1.9616).T hescalingcomplexmatrizischosenash = (b) A
diag(hy1 + ihi2, b1z + ih1g, his + ihig) = Fig 1: 3-D phase portrait of FO 6-D Lii system and
(2+4143,4 +i4,5+ i2).3-D phase portrait of FO 6-D Lii 6-D Liu system in (a)r11 — 212 — 13 and (b)
system and 6-D Liu system are depicted in Fig.1(a-b).
CDCPS trajectories are illustrated in Fig.2(a-f) and
the error converge to zero as shown in Fig.2(g)

211 — 212 — %13

150

Zﬂ(t)
U U |

2,00, ¢y (0=, 0)=h 0, 0=y, (0)

-150
0
7 Conclusion (a) t

150

We proposed a CDCPS technique for the FO 6-D
chaotic systems where the difference among the state
variables of two master systems synchronizes with the
state variables of one slave system. Furthermore, this
scheme is based on Lyapunov stability theory, and the
nonlinear controllers are constructed to perform the

difference complex synchronization. The general
proofs and simulations are presented to illustrate the
efficacy and feasibility of the suggested active control

technique.
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Fig 2: Combination difference complex projective
synchronization between (a) z11(t) and
hi1(z11 — y11) — hi2(z12 — y12), (b) 212(t) and
hii(z12 — y12) + ha2(z11 — y11), (c )) z13(t) and

his(x13 — y13) — hia(z1a — y14),( z14(t) and

his(z14 — y14) + h1a(z13 — 313),(€)z15(t) and

h15($15 - yls) - h16($16 - yle),( )Z o( ) and
his(x16 — y16) + his(x15 — y15), (8) CDCPS error

converging to 0
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