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Abstract In this paper, we investigate the combina-
tion difference complex projective synchronization (CD-
CPS) of the fractional-order (FO) 6-D chaotic system

(CS) using active control technique. Based on the Lya-
punov stability theory and active control technique is to
achieve the combination difference synchronization be-

tween two master systems and one slave system. These
master systems are FO 6-D Lü system, and the slave
system is FO 6-D Liu system. The evolution of the
difference synchronization scheme has additions to the

unit of the existing synchronization technique. . Nu-
merical simulations and graphical results are presented
to demonstrate the effectiveness and reliability of CD-

CPS scheme. The presented CDCPS scheme has several
applications in secure communications and information
processing.

Keywords Combination difference synchronization ·
projective synchronization · 6-D chaotic system · active
Control · fractional order

1 Introduction

The chaos synchronization and chaos control of
dynamical systems are highly essential topics in

mathematics and physics. A CS is a complex nonlinear
system, which is extremely sensitive to initial states
and parameters changes. Fowler et al.[1] are the first
who introduced the complex Lorenz system in 1982,

which performed an essential role in various branches

of physics, mainly for secure communication. In
complex variables, the unit of variables is getting

twice which, enhance the protection of the

Address(es) of author(s) should be given

transmitted information. After that, many CS and
hyperchaotic (HC) complex systems are proposed and

studied such as complex Lorenz, complex Chen,

complex Lu system, complex HC Lorenz [2], etc. In
FO, the complex CS and HC complex system also

introduced in the various paper these are FO complex

Lorenz, FO complex Liu [3], HC complex Lü [4], etc.
Synchronization of complex CS (HC) has excellent
application in the latest decades, such as complete

synchronization [5], anti synchronization [6], difference

synchronization [7, 8], function projective
synchronization [9], projective synchronization (PS)

[10], hybrid projective synchronization [11]. Mahmoud

et al.[12] investigated with projective synchronization
of the complex HC system and suggested a

communication technique based on passive theory. In
[13], author discussed the generalized combination

complex synchronization for FO complex CS. In [4],
the author investigated the complex dynamical

behavior and modified PS in FO complex HC Lü

system.
To obtain the chaos synchronization technique, several
synchronization techniques have been produced such
as active control [14], adaptive control [15], sliding

mode control [16]. Among these techniques, the active
control is used during combination difference complex

synchronization. In difference synchronization

technique is applied in chaotic secure communication
to improve security data. In which the scaling matrix
is designed as a complex matrix. Then it provides a
complex and irregular transmitted signal that they

have the powerful anti-attack capability and
anti-translated ability compare with the previous

model. The selection of FO complex HC system has
been suggested for secure communication.
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The rest of the paper is organized as follow: Section 2
contain Preliminaries. In Section 3 consists the
problem formulation of combination difference

complex projective synchronization. Section 4 provide
the system description of system and Section 5 contain
Example of CDCPS. Section 6 contain the numerical

simulation, Finally Section 7 contain conclusion.

2 Preliminaries

Definition 1: The Caputo’s derivative for function
Ψ(t) with FO q is define by:

cDq
tΨ(y) =

1

γ(n− q)

∫ y

c

Ψn(x)

(y − x)q−n+1
dx

where n− 1 < q < n and γ(q) =
∫∞
0
xq−1e−xdx is the

gamma function.

In this paper, the Caputo definition is applied.
Property 1: If Ψ1(t) is a constant function and the
order q > 0 ,the Caputo FO derivative satisfies the

conditions:

DqΨ1(t) = 0

Property 2: The Caputo fractional derivative
satisfies the following linear property:

Dq[a1Ψ1(t) + a2Ψ2(t)] = a1D
qΨ1(t) + a2D

qΨ2(t)

where Ψ1(t) and Ψ2(t) are functions of t and a1 and a2
are constants.

3 Problem Formulation

Consider the two master chaotic (hyperchaotic)
complex system as:

Dαx = F (x)A+G(x) (1)

Dαy = F (y)A+G(y) (2)

where X = (x1, x2, ..., xn)T and Y = (y1, y2, ..., yn)T

are the state complex vector of system (1) and (2)
respectively and x = xr + jxi, y = yr + jyi, j =

√
−1

and r represent as real parts and i represents
imaginary parts. Assume

x1 = x11 + jx12,x2 = x13 + jx14,....,xn = x1n−1 + jx1n,
then xr = (x11, x13, ..., x1n−1)T ,

xi = (x12, x14, ..., x1n)T .

y1 = y11 + jy12,y2 = y13 + jy14,....,yn = y1n−1 + jy1n,
then yr = (y11, y13, ..., y1n−1)T ,yi = (y12

,y14, ..., y1n)T . F (x) and F (y) are n× n complex
matrix of state complex variables of (1) and (2). G(x)
and G(y) are non-linear complex vector functions and

A is an n× 1 real (or complex) vectors of system
parameter.

One slave CS (HC) complex system is written as

Dαz = H(z)B + L(z) + u (3)

where z = (z1, z2, ..., zn)T is a state complex vector of
system (3). z = zr + jzi, j =

√
−1. Assume

z1 = z11 + jz12,z2 = z13 + jz14,....,zn = z1n−1 + jz1n,
then zr = (z11, z13, ..., z1n−1)T , zi = (z12, z14, ..., z1n)T .

H(z) is n× n complex matrix of state complex
variables, L(z) is a on-linear complex vector function.
B is an n× 1 real (or complex) vectors of system
parameter. The controller is u = ur + jui, where
ur = (u11, u13, ..., u1n−1)T , ui = (u12, u14, ..., u1n)T .

Definition 1:[17, 18] For the maste complex CS (HC)
systems (1) and (2) and the slave CS (HC) system (3)

is said to be combination difference complex
projective synchronization if there exist complex

scaling matrice λ ∈ Rn×n such that.

limt→∞‖E(t)‖ = limt→∞‖z − λ(x− y)‖ = 0

where the complex scaling matrix λ = hr1 + jhj2 =
diag(h11 + jh12, h13 + jh14, ..., h1n−1 + jh1n), ‖.‖

present the norm of a matrix. E(t) = Er(t) + jEi(t),
where Er(t) = (E11, E13, ..., E1n−1)T ,

Ei = (E12, E14, ..., E1n)T .
The error system is written as follows

E(t) = Er(t) + jEi(t)

= zr + jzi − (hr1 + jhi2)(xr + jxi − yr − jyi))
= zr + jzi − (hr1 + jhi2)(xr − yr + j(xi − yi))
= zr + jzi − hr1(xr − yr)− jhr1(xi − yi)
− jhi2(xr − yr) + hi2(xi − yi)
= zr − hr1(xr − yr) + hi2(xi − yi)
+ j(zi − hr1(xi − yi)− hi2(xr − yr)) (4)

Separating real and imaginary error system, we get

Er(t) = zr − hr1(xr − yr) + hi2(xi − yi)
Ei(t) = zi − hr1(xi − yi)− hi2(xr − yr)
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The error dynamics is obtained as

DqEr(t) = Dqzr − hr1(Dqxr −Dqyr) + hi2(Dqxi −Dqyi)

= Hr(z11, z13, ..., z1n−1)B + Lr(z11, z13, ...

, z1n−1)− hr1(F r(x11, x13, ..., x1n−1)A+Gr(x11,

x13, ..., x1n−1)− F r(y11, y13, ..., y1n−1)A

−Gr(y11, y13, ..., y1n−1)) + hi2(F i(x12, x14

, ..., x1n)A+Gi(x12, x14, ..., x1n)− F i(y12, y14
, ..., y1n)A−Gi(y12, y14, ..., y1n)) + ur (5)

DqEi(t) = Dqzi − hr1(Dqxi −Dqyi)− hi2(Dqxr −Dqyr)

= Hi(z12, z14, ..., z1n)B + Li(z12, z14

, ..., z1n)− hr1(F i(x12, x14, ..., x1n)A+Gi(x12

, x14, ..., x1n)− F i(y12, y14, ..., y1n)A−Gi(y12
, y14, ..., y1n)) + hi2(F r(x11, x13

, ..., x1n−1)A+Gr(x11, x13, ..., x1n−1)− F r(y11
, y13, ..., y1n−1)A−Gr(y11, y13, ..., y1n−1)) + ui

(6)

Theorem 1: If the controller is constructed as the
following form

ur = −Hr(z11, z13, ..., z1n−1)B − Lr(z11, z13, ..., z1n−1)

+ hr1(F r(x11, x13, ..., x1n−1)A+Gr(x11, x13, ..., x1n−1)

− F r(y11, y13, ..., y1n−1)A−Gr(y11, y13, ..., y1n−1))

− hi2(F i(x12, x14, ..., x1n)A+Gi(x12, x14, ..., x1n)

− F i(y12, y14, ..., y1n)AGi(y12, y14, ..., y1n))

−K1E
r(t) (7)

ui = −Hi(z12, z14, ..., z1n)B + Li(z12, z14, ..., z1n)

+ hr1(F i(x12, x14, ..., x1n)A+Gi(x12, x14, ..., x1n)

− F i(y12, y14, ..., y1n)A−Gi(y12, y14, ..., y1n))

− hi2(F r(x11, x13, ..., x1n−1)A+Gr(x11, x13, ..., x1n−1)

− F r(y11, y13, ..., y1n−1)A−Gr(y11, y13, ..., y1n−1))

−K2E
i(t) (8)

Then the slave system (3) can asymptotically
synchronize the combination difference system

between two master systems (1) and (2) with regard
to the complex scaling matrix, where K1,K2 > 0 is a

constant.

Proof. Using equations (7) and (8) are substitute in (5)
and (6) respectively. The error systems (5) and (6) are
reduced in the following form.

DqEr(t) = −K1E
r(t) (9)

DqEi(t) = −K2E
i(t) (10)

Selected a Lyapunov function as

V (Er, Ei) =
1

2
((Er)TEr + (Ei)TEi) (11)

Then the derivative of V along the trajectories of the
error dynamics (9) and (10) is takes the form:

DqV (Er, Ei) = (DqEr)TEr + (DqEi)TE

= −K1(Er)2 −K2(Ei)2

≤ 0

Since V > 0 and DqV < 0 and thus from theorem 1,
the error systems are asymptotically stable.

4 System Discription of fractional order 6-D Lü
and 6-D Liu system

Consider the[4] HC complex Lü systems describe in

following manner:
Dqx1 = a1(x2 − x1) + x4

Dqx2 = c1x2 − x1x3 + x4

Dqx3 = 1
2 (x̄1x2 + x1x̄2)− c1x3

Dqx4 = 1
2 (x̄1x2 + x1x̄2)− d1x4

(12)

where x = (x1, x2, x3, x4)T is the state vector,
x1 = x11 + ix12 and x2 = x13 + ix14 are complex state

vector, and x3 = x15 and x4 = x16 are real state

vector. a1, b1, c1, d1 are the parameters of the system
(12).

Dqx11 + iDqx12 = a1(x13 + ix14 − (x11 + ix12))

+x16

Dqx13 + iDqx14 = c1(x13 + ix14) − (x11 + ix12)x15

+x16

Dqx15 = 1
2 ((x11 − ix12)(x13 + ix14)+

(x11 + ix12)(x13 − ix14))− c1x15
Dqx16 = 1

2 ((x11 − ix12)(x13 + ix14)+

(x11 + ix12)(x13 − ix14))− d1x16
(13)

Split real and imaginary parts of system (13), we get
FO 6-D Lü system

Dqx11 = a1(x13 − x11) + x16

Dqx12 = a1(x14 − x12)

Dqx13 = b1x13 − x11x15 + x16

Dqx14 = b1x14 − x12x15
Dqx15 = x11x13 + x12x14 − c1x15
Dqx16 = x11x13 + x12x14 − d1x16

(14)
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Similarly we obtain 6-D FO Liu system [3]

Dqx21 = −a2x21 − d2(x223 − x224)

Dqx22 = −a2x22 − 2d2x23x24

Dqx23 = b2x23 − e2(x21x25 − x22x26)

Dqx24 = b2x24 − e2(x22x25 + x21x26)

Dqx25 = −c2x25 + f2(x21x23 − x22x24)

Dqx26 = −c2x26 + f2(x21x24 + x22x23)

(15)

5 Numerical Example

The fractional-order 6-D Lü is considered as a first
master system.

Dqx11 = a1(x13 − x11) + x16

Dqx12 = a1(x14 − x12)

Dqx13 = b1x13 − x11x15 + x16

Dqx14 = b1x14 − x12x15
Dqx15 = x11x13 + x12x14 − c1x15
Dqx16 = x11x13 + x12x14 − d1x16

(16)

The identical fractional-order 6-D Lü is considered as
a second master system.

Dqy11 = a1(y13 − y11) + y16

Dqy12 = a1(y14 − y12)

Dqy13 = b1y13 − y11y15 + y16

Dqy14 = b1y14 − y12y15
Dqy15 = y11y13 + y12y14 − c1y15
Dqy16 = y11y13 + y12y14 − d1y16

(17)

The fractional-order 6-D Liu system is considered as a
slave system.

Dqz11 = −a2z11 − d2(z213 − z214) + u11

Dqz12 = −a2z12 − 2d2z13z14 + u12

Dqz13 = b2z13 − e2(z11z15 − z12z16) + u13

Dqz14 = b2z14 − e2(z12z15 + z11z16) + u14

Dqz15 = −c2z15 + f2(z11z13 − z12z14) + u15

Dqz16 = −c2z16 + f2(z11z14 + z12z13) + u16

(18)

Error states are given by:
E1 = z1 − h1(x1 − y1)

E2 = z2 − h2(x2 − y2)

E3 = z3 − h3(x3 − y3)

(19)

where E1 = (E11 + iE12), E2 = (E13 + iE14),
E3 = E15 + iE16

E11 = z11 − h11(x11 − y11) + h12(x12 − y12)

E12 = z12 − h11(x12 − x22)− h12(x11 − y11)

E13 = z13 − h13(x13 − y13) + h14(x14 − y14)

E14 = z14 − h13(x14 − y14)− h14(x13 − y13)

E15 = z15 − h15(x15 − y15) + h16(x16 − y16)

E16 = z16 − h15(x16 − y16)− h16(x15 − y15)

(20)

Then the control function is selected as:

u11 = a2z11 + d2(z213 − z214) + h11(a1(x13 − x11)

+x16 − a1(y13 − y11)− y16)− h12(a1(x14

−x12)− a1(y14 − y12))−K1E11

u12 = a2z12 + 2d2z13z14 + h11(a1(x14 − x12)

−a1(y14 − y12)) + h12(a1(x13 − x11)

+x16 − a1(y13 − y11)− y16)−K2E12

u13 = −b2z13 + e2(z11z15 + z12z16) + h13(b1x13

−x11x15 + x16 − b1y13 + y11y15 − y16)

−h14(b1x14 − x12x15 − b1y14 + y12y15)

−K3E13

u14 = −b2z14 + e2(z12z15 + z11z16) + h13(b1x14

−x12x15 − b1y14 + y12y15) + h14(b1x13

−x11x15 + x16 − b1y13 + y11y15 − y16)

−K4E14

u15 = c2z15 − f2(z11z13 + z12z14) + h15(x11x13

+x12x14 − c1x15 − y11y13 − y12y14 + c1y15)

−h16(x11x13 + x12x14 − d1x16 − y11y13
−y12y14 + d1y16)−K5E15

u16 = c2z16 + f2(z11z14 + z12z13) + h15(x11x13

+x12x14 − d1x16 − y11y13 − y12y14 + d1y16)

+h16(x11x13 + x12x14 − c1x15 − y11y13
−y12y14 + c1y15)−K6E16

(21)

The error dynamical system are given in the form

DqE11 = −K1E11, D
qE12 = −K2E12, D

qE13 = −K3E13

DqE14 = −K4E14, D
qE15 = −K5E15, D

qE16 = −K6E16

(22)

Thus the system achieves the combination difference
complex projective synchronization in complex system.

6 Simulation and Results

The parameter values of master and slave systems are
chosen as (a1 = 42, b1 = 25, c1 = 6, d1 = 5), (a2 = 1,
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b2 = 5/2, c2 = 5, d2 = 1, e2 = 4, f2 = 4) for system
(16-18). The initial conditions of the master systems
(16),(17) and the slave system (18) are respectively

taken as. (x11, x12, x13, x14, x15, x16) = (−0.4084
, 0.0492, -1.8907, 0.1506, 49.2122,

-0.2999),(y11, y12, y13
,y14, y15, y16) =

(−0.5090, 0.0500,−2.001, 0.2500, 50.200
, -0.3)(z11, z12, z13, z14, z15, z16) = (21.5257,−0.1541

, 23.3017, -0.1031, -0.1057, -
0.0135)oforderq=0.99.Initialstatesfortheerrorsystem(E11, E12, E13, E14, E15, E16)

= (19.6885, -0.4543, 22.4629, -0.1467, 4.8335,
1.9616).Thescalingcomplexmatrixischosenasλ =

diag(h11 + ih12, h13 + ih14, h15 + ih16) =
(2 + i3, 4 + i4, 5 + i2).3-D phase portrait of FO 6-D Lü
system and 6-D Liu system are depicted in Fig.1(a-b).
CDCPS trajectories are illustrated in Fig.2(a-f) and

the error converge to zero as shown in Fig.2(g)

7 Conclusion

We proposed a CDCPS technique for the FO 6-D

chaotic systems where the difference among the state
variables of two master systems synchronizes with the
state variables of one slave system. Furthermore, this
scheme is based on Lyapunov stability theory, and the
nonlinear controllers are constructed to perform the

difference complex synchronization. The general
proofs and simulations are presented to illustrate the
efficacy and feasibility of the suggested active control

technique.
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